
Discrete Mathematics: Combinatorics and Graph Theory

Homework 3 Solution

Instructions. Solve any 10 questions. Typeset or write neatly and show your work to receive full credit.

1. Find a formula for an given the stated recurrence relation and initial values:

(a) an = 3an−1 − 2 for n ≥ 1 with a0 = 1.
an = 1 for n ≥ 0, which is easily proved by induction. The base case is given in the initial
condition. The inductive step assumes that an−1 = 1 and computes an = 3an−1−2 = 3×1−2 = 1.

(b) an = an−1 + 2an−2 for n ≥ 2 with a0 = 1, a1 = 8.
Write the characteristic polynomial x2 − x − 2 = 0 ⇒ x = 2 and x = −1. The general solution
is an = A(2)n + B(−1)n. Applying initial conditions 1 = A + B and 8 = 2A − B. Solving gives
A = 3 and B = −2 for an = 3(2)n +−2(−1)n.

(c) an = 2an−1 + 3an−2 for n ≥ 2 with a0 = a1 = 1.
The characteristic equation is x2 − 2x − 3 = 0 ⇒ x = 3 and x = −1. The general solution is
an = A(3)n + B(−1)n. Applying initial conditions 1 = A + B and 1 = 3A − B. Solving gives
A = 1/2 and B = 1/2 for an = [3n+ (−1)n]/2.

(d) an = 5an−1 − 6an−2 for n ≥ 2 with a0 = 1, a1 = 3.
The characteristic equation is x2 − 5x + 6 = 0 ⇒ x = 3 and x = 2. The general solution is
an = A(3)n + B(2)n. Applying initial conditions 1 = A + B and 3 = 3A + 2B. Solving gives
A = 1 and B = 0 for an = 3n.

(e) an = 3an−1 − 1 for n ≥ 1 with a0 = 1.
The characteristic root is 3 and the inhomogenous term is a constant, so the solution has the form
A(3)n + c. For a particular solution involving the inhomogeneous term, we require c = 3c− 1 to
obtain c = 1/2. Now the initial condition yields 1 = A× 30 +1/2, so A = 1/2. Thus the solution
is an = (3n+ 1)/2.

2. Find a recurrence relation for the number of ternary strings of length n that contain either two
consecutive 0s or two consecutive 1s.
Let an denote the number of ternary strings with two consecutive 0’s or two consecutive 1’s. We could
start with a 2, and follow with a string of two consecutive 0’s or two consecutive 1’s, which can be
done in an−1 ways. However, we for each k from 0 to n − 2, the string could start with n − 1 − k
alternating 0’s and 1’s followed by a 2, and then be followed by a string of length k containing either
two consecutive 0’s or two consecutive 1’s. There are 2ak such strings, since there are two ways for the
initial piece to alternate. The other possibility is that the string has no 2’s at all. Then it must consist
of n− k− 2 alternating 0’s and 1’s, followed by a pair of 0’s or 1’s, followed by any string of length k.
There are 2×3k such strings. The sum of these as k runs from 0 to n−2 is 3n−1−1. Combining terms
we have the following recurrence relation for n ≥ 2 : an = an−1+2an−2+2an−3+ · · ·+2a0+3n−1− 1.
Substitute n− 1 for n and subtract the above for a closed form solution an = 2an−1+an−2+2× 3n−2.

(a) What are the initial conditions?
a0 = a1 = 0.

(b) How many ternary strings of length six contain two consecutive 0s or two consecutive 1s?

a2 = a1 + 2a0 + 31 − 1 = 0 + 2× 0 + 3− 1 = 2

a3 = a2 + 2a1 + 2a0 + 32 − 1 = 2 + 2× 0 + 2× 0 + 9− 1 = 10

a4 = a3 + 2a2 + 2a1 + 2a0 + 33 − 1 = 10 + 2× 2 + 2× 0 + 2× 0 + 27− 1− 40

a5 = a4 + 2a3 + 2a2 + 2a1 + 2a0 + 34 − 1 = 40 + 2× 10 + 2× 2 + 2× 0 + 81− 1 = 144

a6 = a5 + 2a4 + 2a3 + 2a2 + 2a1 + 2a0 + 35 − 1

= 144 + 2× 40 + 2× 10 + 2× 2 + 2× 0 + 243− 1 = 490
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There are 490 ternary strings of length 6 containing two consecutive 0’s or two consecutive 1’s.

3. A bus driver pays all tolls, using only nickels and dimes, by throwing one coin at a time into the
mechanical toll collector.

(a) Find a recurrence relation for the number of different ways the bus driver can pay a toll of n
cents (where the order in which the coins are used matters).
Let an be the number of different ways to pay a toll of n cents. Writing out a few examples is
useful for intuition: a0 = 0, a5 = 1, a10 = 2, a15 = 3. Either the last coin is a dime or a nickel.
If the last coin is a dime, then n coins can be paid an−5 ways. If the last coin is a nickel then n
coins can be paid an−10 ways. Therefore an = an−5 + an−10 for n ≥ 10. We can only pay tolls
corresponding to multiples of 5 so a5n = a5(n−1) + a5(n−2) for n ≥ 2.

(b) In how many different ways can the driver pay a toll of 45 cents?
We need to compute a45 which requires initial conditions a0 = 1 and a5 = 1. Iterating we find
that a10 = 2, a15 = 3, a20 = 5, a25 = 8, a30 = 13, a35 = 21, a40 = 34, a45 = 55.

4. Show that the Fibonacci numbers satisfy the recurrence relation fn = 5fn−4+3fn−5 for n = 5, 6, 7, · · · ,
together with the initial conditions f0 = 0, f1 = 1, f2 = 1, f3 = 2, and f4 = 3. Use this recurrence
relation to show that f5n is divisible by 5, for n = 1, 2, 3, · · · .
The original definition of Fiboniacci numbers is fn = fn−1 + fn−2 for n ≥ 2 and f0 = 0, f1 = 1. Then
f2 = 1, f3 = 2, f4 = 3. Since fn−3 = fn− 4 + fn−5, fn−2 = fn−3 + fn−4 and fn−1 = fn−2 + fn−3 we
have:

fn = fn−1 + fn−2 = (fn−2 + fn−3) + fn−2 = 2fn−2 + fn−3

= 2(fn−3 + fn−4) + fn−3 = 3fn−3 + 2fn−4

= 3(fn−4 + fn−5) + 2fn−4 = 5fn−4 + 3fn−5

We will prove 5 | f5n for all n ≥ 1 via induction. The base case is true since f5 = f3 + f4 = 5. The
inductive hypothesis assumes that P (n) is true so that f5n = 5k for some k. Then f5(n+1) = f5n+5 =
5f5(n+1)−4 + 3f5(n+1)−5 = 5f5n+1 + 3f5n = 5f5n+1 + 15k = 5(f5n+1 + 3k) which is divisible by 5.

5. Solve the recurrence relation an = 6an−1 − 12an−2 + 8an−3 with a0 = −5, a1 = 4, and a2 = 88.
The characteristic polynomial x3 − 6x2 + 12x − 8 = (r − 2)3 = 0 has root 3 of multiplicity 3. The
general solution is thus an = α12

n + α2n2
n + α3n

22n. To find the coefficients solve the system of
equations:

a0 = −5 = α1

a1 = 4 = 2α1 + 2α2 + 2α3

a2 = 88 = 4α1 + 8α2 + 16α3

We find α1 = −5, α2 = 1/2, α3 = 13/2. Therefore an = −5× 2n + (1/2)× n× 2n + (13/2)× n2 × 2n.

6. What is the general form of the solutions of a linear homogeneous recurrence relation if its character-
istic equation has the roots −1,−1,−1, 2, 2, 5, 5, 7?

an = (α1,0 + α1,1n+ α1,2n
2)(−1)n + (α2,0 + α2,1n)2

n + (α3,0 + α3,1n)5
n + α4,07

n

7. Find the solution of the recurrence relation an = 2an−1 + 3 · 2n.
The associated homogeneous recurrence relation is an = 2an−1. Therefore a

(h)
n = α2n. To solve the

non-homogeneous part, look for a function of the form an = cn · 2n. Plug this into the recurrence to
obtain cn ·2n = 2c(n−1)2n−1+3 ·2n. Divide by 2n−1 to obtain 2cn = 2c(n−1)+6 ⇒ c = 3. Therefore

a
(p)
n = 3n ·2n. The general solution is the sum of the homogeneous solution and the particular solution

an = α2n + 3n · 2b = (3n+ α)2n.
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8. Find the solution of the recurrence relation an = 4an−1 − 3an−2 + 2n + n+ 3 with a0 = 1 and a1 = 4.
The associated homogeneous recurrence relation is an = 4an−1 − 3an−2. The characteristic equation

is x2 − 4x + 3 = (x − 1)(x − 3) = 0 ⇒ x = 1 and x = 3. Therefore a
(h)
n = α11

n + α23
n. Since the

non-homogeneous part is an exponential and a linear term we can the particular solution in two parts
F1(n) = 2n and F2(n) = n+ 3.

The particular solution for F1(n) is a
(p1)
n = C · 2n. Plugging into the recurrence relation gives C2n =

4C2n−1 − 3C2n−2 + 2n ⇒ C = −4 and a
(p1)
n = −4 · 2n.

Consider apn = dn2 + en+ f and substitute in the remaining part of the recurrence:

dn2 + en+ f = 4(d(n− 1)2 + e(n− 1) + f)− 3(d(n− 2)2 + e(n− 2) + f) + n+ 3

⇒ 3 = 4d+ e+ 1 ⇒ d = −1/4, −8d+ 2e+ f + 3 = f

⇒ e = −5/2 , f = 3

⇒ a(p)n = −1

4
n2 − 5

2
n+ 3

Therefore an = α1+α23
n−4·2n− n2

4 − 5
2n+3. Applying the initial conditions a0 = 1 = α1+α2−3+3 ⇒

α1 + α2 = 2 and a1 = a1 + 3α2 − 8− 1/4− 5/2 + 3 = 4 ⇒ α1 + 3α2 = 47/4 and α1 + α2 = 2. Solving
yields α2 = 39/8 and α1 = −23/8. Therefore

αn = −23

8
+

39

8
3n − 4 · 2n − n2

2
− 5

2
+ 3

⇒ αn =
13

8
· 3n+1 − 4 · 2n − n2

4
+

1

8
− 5

2
n

9. Suppose ⟨a⟩ satisfies the recurrence an = −an−1 + λn. Determine the values of λ such that ⟨a⟩ can be
unbounded.
Solving for the characteristic root of the homogeneous part yields −1. When λ ̸= −1, a particular
solution bn = 1

λ+1n
λ+1 is found by solving Cλn = −Cλn+1 + λn for C. The general solution is then

an = A(−1)n + 1
λ+1n

λ+1. This is unbounded for |λ| > 1.

When λ = −1, a particular solution bn = nλn is found by solving Cnλn = −C(n − 1)λn−1 + λn for
C after dividing by λ and equating corresponding coefficients. The linear term confirms that λ = −1
and the constant term yields C = −λ = 1. The general solution is then an = A(−1)n + n(−1)n for
constant A, which is again unbounded.

10. Let an = n3. Find a constant-coefficient first-order linear recurrence relation satisfied by ⟨a⟩. Does
there exist a homogeneous constant-coefficint first-order linear recurrence relation satisfied by ⟨a⟩?
Why or why not?
The solution has no nontrivial exponential part. We will look for a first-order relation of the form
an = an−1 + f(n). Set f(n) = n3 − (n− 1)3 = 3n2 − 3n+ 1.

Every homogeneous constant-coefficinet first-order linear recurrence has the form an = can−1, with
general solution Acn. The constant A cannot be chosen to make Acn = n3.

11. Derive a general formula for the recurrence an = can−1 + f(n)βn where f is a polynomial and β a
constant.
Define bn by setting an = βnbn. Substituting into the recurrence for ⟨a⟩ and canceling βn yields
bn = (c/β)bn−1 + f(n). If c ̸= β then bn = Acnβ−n + p(n) where p(n) is a polynomial of degree
d. If c = β then bn = p(n) where p(n) is a polynomial of degree d + 1. Multiplying by βn yields
an = Acn + p(n)βb and an = p(n)βb in the two cases.

12. Let f be a polynomial of degree n. The first difference of f is the function g = ∆f defined by
g(x) = f(x + 1) − f(x). The k-th difference of f is the function g(k) defined inductively by g(0) = f
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and g(k) = ∆g(k+1) for k ≥ 1. Obtain a formula for the nth difference of f .
This is analogous to the polynomial derivative result sketched in lecture with the Binomial theorem.
The nth difference of a polynomial of degree n is the constant n! times the leading coefficient of the
polynomial. We prove that the first difference of a polynomial of degree d with leading coefficient a
is a polynomial of degree d − 1 with leading coefficient da. Since the nth difference is obtained by
applying the first difference n times, this yields the claimed result.

By the definition of first difference, the first difference of a sum of polynomials is the sum of their first
differences, and the first difference of c times a polynomial is c∆f . It therefore suffices to prove the
claim for pure powers. We have ∆xd = (x+ 1)d − xd. Expanding (x+ 1)d by the Binomial Theorem
shows that the result is a polynomial of degree d− 1 with leading coeficient d.
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